Exercise 8.2.3

Show that the Chebyshev ODE, Table 7.1, may be put into self-adjoint form by multiplying by $\left(1-x^{2}\right)^{-1 / 2}$ and that this gives $w(x)=\left(1-x^{2}\right)^{-1 / 2}$ as the appropriate weighting function.

Solution

From Table 7.1 on page 345, Chebyshev's equation is

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0 .
$$

At the moment it is not self-adjoint because

$$
\frac{d}{d x}\left(1-x^{2}\right) \neq-x
$$

However, if both sides of Chebyshev's equation are multiplied by the weight function $w(x)=\left(1-x^{2}\right)^{-1 / 2}$, then it becomes self-adjoint

$$
\begin{equation*}
\left(1-x^{2}\right)^{1 / 2} y^{\prime \prime}-x\left(1-x^{2}\right)^{-1 / 2} y^{\prime}+n^{2}\left(1-x^{2}\right)^{-1 / 2} y=0 \tag{1}
\end{equation*}
$$

because

$$
\begin{aligned}
\frac{d}{d x}\left[\left(1-x^{2}\right)^{1 / 2}\right] & =\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2}(-2 x) \\
& =-x\left(1-x^{2}\right)^{-1 / 2}
\end{aligned}
$$

Equation (1) can therefore be written as

$$
\left(1-x^{2}\right)^{1 / 2} y^{\prime \prime}+\frac{d}{d x}\left[\left(1-x^{2}\right)^{1 / 2}\right] y^{\prime}+n^{2}\left(1-x^{2}\right)^{-1 / 2} y=0
$$

or

$$
\frac{d}{d x}\left[\left(1-x^{2}\right)^{1 / 2} y^{\prime}\right]+n^{2}\left(1-x^{2}\right)^{-1 / 2} y=0
$$

